Design iGuzzini

iGuzzini

Last information update: May 2024

Product configuration: MB32

MB32: Spotlight - Small body - LED Neutral White - Electronic ballast - Wide Flood Optic

Product code

MB32: Spotlight - Small body - LED Neutral White - Electronic ballast - Wide Flood Optic Attention! Code no longer in production

Technical description

Adjustable spotlight with adapter for installation on a mains voltage track. Luminaire made of die-cast aluminium. Spotlight double adjustability allows a 360° rotation about the vertical axis and 90° tilting relative to the horizontal plane. Mechanical aiming locks both for rotation about the vertical axis and tilting relative to the horizontal plane. Equipped with ballast. The luminaire comes complete with a LED unit in a neutral white tone.

Installation

On an electrified track

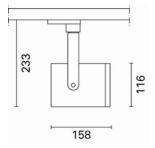
Colour

White (01) | Black (04) | Grey / Black (74)

Mounting

three circuit track

Wiring


IP20

IP40

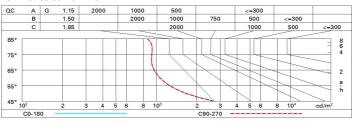
Electronic components housed in the luminaire

for optical

Complies with EN60598-1 and pertinent regulations 8 (W) (€ **©**

1758
15.5
2200
14
113.5
-
0
80
42°

CRI: 80 Colour temperature [K]: 4000 MacAdam Step: 2 > 50,000h - L80 - B10 (Ta 25°C) Life Time LED 1: Lamp code: Number of lamps for optical assembly: ZVEI Code: LED Number of optical assemblies:


Polar

Imax=3736 cd	CIE	Lux			
90° 180° 90°	nL 0.80 99-100-100-100-80 UGR <10-<10	h	d	Em	Emax
	DIN A.61	2	1.5	752	927
4000	UTE 0.80A+0.00T F"1=991	4	3.1	188	232
4000	F"1+F"2=998 F"1+F"2+F"3=999	6	4.6	84	103
α=42°	LG3 L<1500 cd/m² at 65° UGR<10 L<1500 cd/mq @	_{65°} 8	6.1	47	58

Utilisation factors

R	77	75	73	71	55	53	33	00	DRR
K0.8	72	68	66	63	67	65	65	62	78
1.0	75	72	69	67	71	69	68	66	82
1.5	79	76	74	73	75	74	73	70	88
2.0	81	79	78	77	78	77	76	74	93
2.5	83	81	80	79	80	79	78	76	95
3.0	84	83	82	81	82	81	80	78	97
4.0	85	84	84	83	83	82	81	79	99
5.0	85	85	84	84	84	83	82	80	100

Luminance curve limit

Corre	ected UC	GR value:	s (at 220	0 lm bar	e lamp li	eu oni mu	flux)					
Rifled	et.:											
ce il/c	av	0.70	0.70	0.50	0.50	0.30	0.70	0.70	0.50	0.50	0.30	
walls work pl.		0.50 0.20	0.30 0.20	0.50 0.20	0.30	0.30 0.20	0.50 0.20	0.30	0.50 0.20	0.30	0.3	
								0.20		0.20	0.20	
Room dim			viewed					viewed				
X	У		(crosswis	e			endwise	100			
2H	2H	7.6	8.2	7.9	8.4	8.7	7.6	8.2	7.9	8.4	8.	
	3H	7.6	8.1	7.9	8.4	8.7	7.5	8.0	7.8	8.3	8.	
	4H	7.6	8.1	7.9	8.4	8.7	7.5	0.8	7.8	8.2	8.	
	бН	7.6	0.8	7.9	8.3	8.7	7.4	7.8	7.7	8.2	8.	
	H8	7.6	0.8	7.9	8.3	8.7	7.4	7.8	7.7	8.1	8.	
	12H	7.6	0.8	7.9	8.3	8.7	7.3	7.7	7.7	8.1	8.	
4H	2H	7.5	0.8	7.8	8.2	8.5	7.6	8.1	7.9	8.4	.8	
	3H	7.5	7.9	7.8	8.2	8.6	7.5	7.9	7.9	8.3	8.	
	4H	7.5	7.8	7.9	8.2	8.6	7.5	7.8	7.9	8.2	8.	
	6H	7.5	7.8	7.9	8.2	8.7	7.4	7.8	7.9	8.2	8.	
	HS	7.5	7.8	0.8	8.2	8.7	7.4	7.7	7.9	8.1	8.	
	12H	7.5	7.8	0.8	8.2	8.7	7.4	7.6	7.8	8.1	8.	
нв	4H	7.4	7.7	7.9	8.1	8.6	7.5	7.8	0.8	8.2	8.	
	6H	7.5	7.7	0.8	8.2	8.7	7.5	7.8	0.8	8.2	8.	
	HS	7.5	7.7	0.8	8.2	8.7	7.5	7.7	0.8	8.2	8.	
	12H	7.5	7.7	0.8	8.2	8.7	7.5	7.7	0.8	8.2	8.	
12H	4H	7.4	7.6	7.8	8.1	8.5	7.5	7.8	0.8	8.2	8.	
	бН	7.5	7.7	7.9	8.1	8.6	7.5	7.7	0.8	8.2	.8	
	H8	7.5	7.7	0.8	8.2	8.7	7.5	7.7	0.8	8.2	8.	
Varia	tions wi	th the ol	bserverp	noitieo	at spacir	ıg:						
S =	1.0H	5.3 / -4.9					5.3 / -4.9					
	1.5H		8.0 / -5.3					8.0 / -5.3				