iGuzzini

Last information update: February 2025

Product configuration: QJ41

QJ41: Minimal 15 cells - Medium beam - LED

Product code

QJ41: Minimal 15 cells - Medium beam - LED

White (01) | Black (04) | Gold (14)* | Burnished chrome (E6)*

Technical description

Linear miniaturised recessed luminaire with 15 optical elements for LED lamps - fixed optic. Despite the ultracompact size of the product, the patented technology of the optic system guarantees an efficient luminous flux and a high level of controlled glare visual comfort. Main body with die-cast aluminium radiant surface, minimal (frameless) version for mounting flush with the ceiling. For recessed installation in a false ceiling a specific adapter is required that is available with a separate item code. Metallised, thermoplastic, high definition Opti Beam reflector, integrated in a set-back position in the anti-glare screen. Supplied with a dimmable DALI power supply unit connected to the luminaire.

Installation

Colour

Mounting

* Colours on request

The luminaire is recessed in the specific adapter (QJ93) by means of a steel wire spring, previously installed on the ceiling that can be 12.5 / 15 / 20 mm thick. A special protective sheath allows finishing operations on the plasterboard to be simplified and speeded up.

Weight (Kg)

0.59

~	ЩЦ	<u></u> 6
H	268	

__/ / 26x273 wall recessed|ceiling recessed

On the power supply unit with terminal board included. Notes

Wiring

The special steel wire spring provided is required to facilitate the eventual extraction of the recessed body once it has been inserted.

Technical data			
Im system:	2133	Colour temperature [K]:	3000
W system:	33.8	MacAdam Step:	2
Im source:	2700	Life Time LED 1:	> 50,000h - L80 - B10 (Ta 25°C)
W source:	30	Voltage [Vin]:	230
Luminous efficiency (Im/W,	63.1	Lamp code:	LED
real value):		Number of lamps for optical	1
Im in emergency mode:	-	assembly:	
Total light flux at or above	0	ZVEI Code:	LED
an angle of 90° [Lm]:		Number of optical	1
Light Output Ratio (L.O.R.)	79	assemblies:	
[%]:		Control:	DALI-2
Beam angle [°]:	25°		
CRI (minimum):	90		

Polar

Imax=9855 cd	CIE	Lux			
90° 180°	nL 0.79 0° 100-100-100-100-79 UGR <10-<10	h	d	Em	Emax
	A.61	2	0.9	2046	2464
	0.79A+0.00T F"1=999	4	1.7	511	616
10500	F"1+F"2=1000 F"1+F"2+F"3=1000 CIBSE	6	2.6	227	274
α=24°	LG3 L<1500 cd/m ² at 65 UGR<10 L<1500 cd/mq	@65° 8	3.4	128	154

Utilisation factors

R	77	75	73	71	55	53	33	00	DRR
K0.8	71	68	65	63	67	65	64	62	78
1.0	75	71	69	67	70	68	68	66	83
1.5	78	76	74	72	75	73	72	70	89
2.0	81	79	77	76	78	76	76	73	93
2.5	82	81	80	79	80	79	78	76	96
3.0	83	82	81	81	81	80	79	77	98
4.0	84	83	83	82	82	82	80	79	99
5.0	84	84	84	83	83	82	81	79	100

Luminance curve limit

QC	A	G	1.15	2000	1000	500		<-300		
	в		1.50		2000	1000	750	500	<=300	
	C		1.85			2000		1000	500	<=300
85° (~ / . ~			
50										- 8
75°		-				$\left \left\{ \left\{ \cdot \right\} \right\}$			-	- 4
	/									
85°										2
55°										a
55.	~								\times	h
45° .	-	_								
			2	3 4 5	6 8 1	0 ³	2 3	4 5 6	8 10 ⁴	cd/m ²
+5 1	0									

UGR diagram

Rifle	ct											
ceil/cav		0.70	0.70	0.50	0.50	0.30	0.70	0.70	0.50	0.50	0.30	
walls	3	0.50	0.30	0.50	0.30	0.30	0.50	0.30	0.50	0.30	0.30	
work	cpl.	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	
	n dim	833/10/03		viewed			0.000000000		viewed			
x	У	crosswise						endwise				
2H	2H	3.0	5.1	3.3	5.4	5.7	3.0	5.1	3.3	5.4	5.7	
	3H	2.8	4.4	3.2	4.7	5.1	2.8	4.4	3.2	4.7	5.1	
	4H	2.8	4.1	3.1	4.4	4.8	2.7	4.1	3.1	4.4	4.8	
	бH	2.7	3.7	3.1	4.1	4.4	2.7	3.7	3.1	4.1	4.4	
	BH	2.7	3.7	3.1	4.1	4.4	2.7	3.7	3.1	4.0	4.4	
	12H	2.6	3.7	3.0	4.0	4.4	2.6	3.6	3.0	4.0	4.4	
4H	2H	2.7	4.1	3.1	4.4	4.8	2.8	4.1	3.1	4.4	4.8	
	ЗH	2.6	3.6	3.0	4.0	4.4	2.6	3.6	3.0	4.0	4.4	
	4H	2.5	3.5	2.9	3.9	4.3	2.5	3.5	2.9	3.9	4.3	
	6H	2.2	3.8	2.6	4.3	4.8	2.1	3.8	2.6	4.3	4.7	
	BH	2.0	3.9	2.5	4.4	4.9	2.0	3.9	2.5	4.4	4.9	
	12H	1.9	3.9	2.5	4.4	4.9	1.9	3.9	2.4	4.3	4.9	
вн	4H	2.0	3.9	2.5	4.4	4.9	2.0	3.9	2.5	4.4	4.9	
	6H	1.9	3.7	2.4	4.2	4.7	1.9	3.7	2.4	4.2	4.7	
	HS	1.9	3.5	2.4	4.0	4.5	1.9	3.5	2.4	4.0	4.5	
	12H	2.1	3.1	2.6	3.6	4.2	2.1	3.1	2.6	3.6	4.1	
12H	4H	1.9	3.9	2.4	4.3	4.9	1.9	3.9	2.5	4.4	4.9	
	бH	1.9	3.5	2.4	4.0	4.5	1.9	3.5	2.5	4.0	4.6	
	H8	2.1	3.1	2.6	3.6	4.1	2.1	3.1	2.6	3.6	4.2	
Varia	ations wi	th the ol	bserver	osition	at spacir	ng:						
S =	1.0H		6	9 / -11	.5	6.9 / -11.5						
	1.5H		9	.7 / -11	.7	9.7 / -11.7						