iGuzzini

Last information update: February 2025

Product configuration: QJ48

QJ48: Minimal 15 cells - Flood beam - Tunable White - LED

QJ48: Minimal 15 cells - Flood beam - Tunable White - LED

Installation

tablet and smartphones too.

Product code

Technical description

The luminaire is recessed in the specific adapter (QJ93) by means of a steel wire spring, previously installed on the ceiling that can be 12.5 / 15 / 20 mm thick. A special protective sheath allows finishing operations on the plasterboard to be simplified and speeded up.

Weight (Kg)

Minimal linear 15 optic element recessed miniaturised luminaire. Using LED lamps with a high colour rendering index and a different colour temperature allows dynamic light modulation to be obtained. The variation is achieved by mixing an emission of 8 x 2700K LEDs and 7 x 5700K LEDs. Despite the disparity of lamps that use extreme channels - 2700K and 5700K - the intensity of the flux emitted remains the same. Moreover, even when products of different sizes are used, the colour temperature remains constant and uniform. Main body with die-cast aluminium radiant surface; frameless version for mounting flush with ceiling. For recessed installation in a false ceiling a specific adapter is required that is available with a separate item code. Metallised, thermoplastic, high definition Opti Beam reflectors, integrated in a set-back position in the anti-glare screen. The product is designed to be used together with codes 6170 + M630 to obtain a solution suitable for small to medium systems that can be programmed with a DALI protocol via a simple and intuitive user touch-panel. Other management systems are also available with a separate code for larger systems that require the intervention of a specialised technician to programme them: the MH97 + MH93 + MI02 group offers a DALI / KNX programmable solution, and the MH97 + MH93 + M618 group allows the system management to be extended to remote devices like

White (01) Black (04) Gold (14)* Burnished chrome (E6)*	0.72
* Colours on request	

Mounting

wall recessed|ceiling recessed

Wiring

Colour

DALI control gear units included. Different management systems are available with a separate code. For technical details, properties and connection procedures see the instruction sheet.

Notes

The special steel wire spring provided is required to facilitate the eventual extraction of the recessed body once it has been inserted.

Technical data			
Im system:	2241	CRI (minimum):	90
W system:	32.8	Colour temperature [K]:	Tunable white 2700 - 5700
Im source:	2700	Life Time LED 1:	> 50,000h - L80 - B10 (Ta 25°C)
W source:	28	Lamp code:	LED
Luminous efficiency (Im/W, real value):	68.3	Number of lamps for optical assembly:	1
Im in emergency mode:	-	ZVEI Code:	LED
Total light flux at or above an angle of 90° [Lm]:	0	Number of optical assemblies:	1
Light Output Ratio (L.O.R.) [%]:	83	Control:	DALI-2
Beam angle [°]:	43°		

Polar

Imax=4603 cd	CIE	Lux			
90° 180° 90°	∏nL 0.83 100-100-100-100-83 UGR <10-<10	h	d	Em	Emax
	DIN A.61 UTE	2	1.5	937	1142
$K \times T \times X$	0.83A+0.00T F"1=999	4	3.1	234	286
5000	F"1+F"2=1000 F"1+F"2+F"3=1000 CIBSE	6	4.6	104	127
α=42°	LG3 L<1500 cd/m ² at 65° UGR<10 L<1500 cd/mq @	a ₆₅ , 8	6.1	59	71

Utilisation factors

R	77	75	73	71	55	53	33	00	DRR
K0.8	75	71	68	66	70	68	68	65	78
1.0	78	75	72	70	74	72	71	69	83
1.5	82	80	77	76	79	77	76	74	89
2.0	85	83	81	80	82	80	79	77	93
2.5	86	85	84	83	84	83	82	79	96
3.0	87	86	85	85	85	84	83	81	98
4.0	88	87	87	86	86	86	84	82	99
5.0	89	88	88	88	87	87	85	83	100

Luminance curve limit

20			1.15	2000	1000	500		<-300		
	в		1.50		2000	1000	750	500	<=300	
	C		1.85			2000		1000	500	<=300
							1	/ /		
B5° ſ					-		$h(\pi)$			- 8
			-							- 6
75°						$ \downarrow \downarrow \downarrow$			-	4
-	1									
5°	1									2
,5	(~ 2
	1								$\langle -$	a
55°		~								- h
		-								< "
45° .	n ²		2	3 4	5 6 8 1	0 ³	2 3	4 5 6	8 10 ⁴	cd/m ²
10										
10	C0-180						C90-270 -			

UGR diagram

Rifle	ct c										
ce il/c		0.70	0.70	0.50	0.50	0.30	0.70	0.70	0.50	0.50	0.30
walls		0.50	0.30	0.50	0.30	0.30	0.50	0.30	0.50	0.30	0.30
work	pl.			0.20	0.20	0.20	0.20	0.20			
Roon	n dim						viewed				
x	У		0	crosswis	e				endwise	2	
2H	2H	7.1	7.6	7.4	7.8	8.1	7.1	7.6	7.4	7.8	8.1
	ЗH	7.0	7.4	7.3	7.7	0.8	7.0	7.4	7.3	7.7	8.0
	4H	6.9	7.4	7.3	7.6	7.9	6.9	7.4	7.3	7.6	7.9
	6H	6.9	7.2	7.2	7.6	7.9	6.9	7.2	7.2	7.6	7.9
	BH	6.8	7.2	7.2	7.5	7.9	6.8	7.2	7.2	7.5	7.8
	12H	6.8	7.2	7.2	7.5	7.8	6. 8	7.1	7.2	7.5	7.8
4H	2H	6.9	7.4	7.3	7.6	7.9	6.9	7.4	7.3	7.6	7.9
	ЗH	6.8	7.1	7.2	7.5	7.8	6.8	7.1	7.2	7.5	7.8
	4H	6.7	7.0	7.1	7.4	7.8	6.7	7.0	7.1	7.4	7.8
	6H	6.6	6.9	7.0	7.3	7.7	6.6	6.9	7.0	7.3	7.7
	BH	6.6	8.0	7.0	7.2	7.7	6.6	6.8	7.0	7.2	7.7
	12H	6.5	6.8	7.0	7.2	7.6	6.5	6.7	7.0	7.2	7.6
вн	4H	6.6	6.8	7.0	7.2	7.7	6.6	6.8	7.0	7.2	7.7
	6H	6.5	6.7	7.0	7.1	7.6	6.5	6.7	7.0	7.1	7.6
	BH	6.4	6.6	6.9	7.1	7.6	6.4	6.6	6.9	7.1	7.6
	12H	6.4	6.6	6.9	7.0	7.6	6.4	6.5	6.9	7.0	7.5
12H	4H	6.5	6.7	7.0	7.2	7.6	6.5	6.8	7.0	7.2	7.6
	6H	6.4	6.6	6.9	7.1	7.6	6.4	6.6	6.9	7.1	7.6
	8H	6.4	6.5	6.9	7.0	7.5	6.4	6.6	6.9	7.0	7.6
Varia	tions wi	th the ol	pserverp	osition	at spacir	ng:					
S =	1.0H		7	.0 / -14	.5	7.0 / -14.5					
	1.5H		9	8 / -14	.7	9.8 / -14.7					